Ref No:

SRI KRISHNA INSTITUTE OF TECHNOLOGY, BANGALORE-90

COURSE PLAN

Academic Year -2018-19

Program:	B E – Civil Engineering
Semester :	3
Course Code:	18CV36
Course Title:	Engineering Geology
Credit / L-T-P:	4 / 4-0-0
Total Contact Hours:	50
Course Plan Author:	Dr. K. SATISH

Academic Evaluation and Monitoring Cell

#29, Hesaragatta Main Road, Chimney Hills Chikkabanavara Post Bangalore-560090 PH-080-23821488/23821315 www.Skit.org, Email: skitprinci1@gmail.com

Table of Contents

A. COURSE INFORMATION	4
1. Course Overview	4
2. Course Content	4
3. Course Material	
4. Course Prerequisites	6
5. Content for Placement, Profession, HE and GATE	6
B. OBE PARAMETERS	6
1. Course Outcomes	6
2. Course Applications	7
3. Mapping And Justification	7
4. Articulation Matrix	
5. Curricular Gap and Content	
6. Content Beyond Syllabus	
C. COURSE ASSESSMENT	
1. Course Coverage	
2. Continuous Internal Assessment (CIA)	
D1. TEACHING PLAN - 1	10
Module - 1	10
Module – 2	
E1. CIA EXAM – 1	12
a. Model Question Paper - 1	12
b. Assignment -1	13
D2. TEACHING PLAN - 2	16
Module – 3	
Module – 4	
E2. CIA EXAM – 2	
a. Model Question Paper - 2	
b. Assignment – 2	
D3. TEACHING PLAN - 3	22
Module – 5	
E3. CIA EXAM – 3	24
a. Model Question Paper - 3	
b. Assignment – 3	
F. EXAM PREPARATION	
1. University Model Question Paper	
2. SEE Important Questions	
G. Content to Course Outcomes	
1. TLPA Parameters	
2. Concepts and Outcomes:	

Note : Remove "Table of Content" before including in CP Book

Each Course Plan shall be printed and made into a book with cover page

Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

A. COURSE INFORMATION

1. Course Overview

Degree:	BE	Program:	CV
Semester:	3	Academic Year:	2018
Course Title:	ENGINEERING GEOLOGY	Course Code:	18CV36
Credit / L-T-P:	3/3-0-0	SEE Duration:	180 Minutes
Total Contact Hours:	50 Hours	SEE Marks:	60 Marks
CIA Marks:	40 Marks	Assignment	1 / Module
Course Plan Author:	Dr. K SATISH	Sign	Dt:
Checked By:	MOHAN K T	Sign	Dt:
CO Targets	CIA Target :85 %	SEE Target:	72 %

Note: Define CIA and SEE % targets based on previous performance.

2. Course Content

Content / Syllabus of the course as prescribed by University or designed by institute. Identify 2 concepts per module as in G.

Moc	Content		Identified Module	Blooms
ule		ng	Concepts	Learning
		Hours		Levels
1	Introduction: Application of Earth Science in Civil Engineering Practices, Understanding the earth, internal structure and composition. Mineralogy: Mineral properties, composition and their use in the manufacture of construction materials – Quartz Group (Glass); Feldspar Group (Ceramic wares and Flooring tiles); Kaolin (Paper, paint and textile); Asbestos (AC sheets); Carbonate Group (Cement) ; Gypsum (POP, gypsum sheets, cement); Mica Group (Electrical industries); Ore minerals - Iron ores (Steel); Chromite (Alloy); Bauxite (aluminum); Chalcopyrite (copper)	10 (3, 9)	Minerals	L1,L2
2	Petrology: Formation, Classification and Engineering Properties. Rock as construction material, concrete aggregate, railway ballast, roofing, flooring, cladding and foundation. Deformation of rocks, Development of Joints, Folds, Faults and Unconformities. Their impact in the selection of sites for Dams, Reservoirs, Tunnels, Highways and Bridges, Rock Quality Determination (RQD), Rock Structure Rating (RSR),: Igneous Rocks - Granite, Gabbro, Dolerite, Basalt; Sedimentary rocks - Sandstone, Shale, Limestone, Laterite; Metamorphic rocks - Gneiss, Quartzite,Slate, Charnockite: Decorative stones - Porphyries, Marble and Quartzite	(4, 3)	Rock formation	L2,L3
3	Geomorphology and Seismology: Landforms – Classification, Rock weathering, types and its effects on Civil Engineering Projects. Study of Geo-morphological aspects in the selection of sites for Dams, Reservoirs, Tunnels, Highways and Bridges. Watershed management, Floods and their control, River valley, Drainage pattern – parameters and development; Coastlines and their engineering considerations. Earthquake - Causes and Effects,, Seismic waves, Engineering problems related to Earthquakes, Earthquake intensity, Richter Scale, Seismograph, Seismic zones- World and India, Tsunami – causes and effects. Early warning system. Reservoir Induced Seismicity; Landslides – causes and their control	(5, 7)	Landforms, Earthquakes	L2,L3,L5
4	Hydrogeology: Hydrological cycle, Occurrence of	10	Groundwater/surf	L2,L4,L5
	Groundwater in different terrains -Weathered, Hard and	(7, 6)	ace water	

-	Total	54	-	-
	Quarrying and Reservoirs on Environment. Natural Disasters and their mitigation.			
	LANDSAT Imagery-Definition and its use. Impact of Mining,			
	Geographic Information System (GIS) and Global Positioning System (GPS) – Concept and their use resource mapping.			
	Remote Sensing - Concept, Application and its Limitations;		GIS	
5	Geodesy: Study of Topographic maps and Contour maps;	10	Remotesensing&	L2,L4,L5
	and Artesian Wells, Artificial Recharging of Groundwater, Sea water intrusion and remedies.			
	Permeability, Transmissibility and Storage Coefficient. Springs			
	and parameters - Porosity, Specific yield and retention,			
	Resistivity curves, Water Bearing Formations, Aquifer types			
	and TH of Groundwater. Groundwater Pollution, Groundwater Exploration- Electrical Resistivity and Seismic methods,			
	Stratified rocks; Determination of Quality aspects - SAR, RSC		exploration	

3. Course Material

Books & other material as recommended by university (A, B) and additional resources used by course teacher (C).

1. Understanding: Concept simulation / video ; one per concept ; to understand the concepts ; 15 – 30 minutes

2. Design: Simulation and design tools used – software tools used ; Free / open source

2. Parbin Singh, "Text Book of Engineering and General Geology", Published by S.K.Kataria and Sons, New Dehli In Lib/ In dep B Reference books (Title, Authors, Edition, Publisher, Year.) - 1. Earthquake Tips - Learning Earthquake Design and Construction - C V R Murthy Published by National Information Centre of Earthquake Engineering, Indian Institute of Technology, Kanpur. - 2. Dimitri P Krynine and William R Judd, "Principles of Engineering Geology and Geotechnics", CBS Publishers and Distributors, New Delhi. In Lib 3. K V G K Gokhate, "Principles of Engineering Geology", BS Publications, Hyderabad. - 4. M Anji Reddy, "Text book of Remote Sensing and Geographical Information System", BS Publications, Hyderabad. - 5. Ground water Assessment, development and Management by K.R. Karanth, Tata Mc Graw Hills - 6. K. Todd, "Groundwater Hydrology", Wiley. 7. D. Venkata Reddy, "Engineering Geology", New Age International Publications, New Delhi. - 8. S.K Duggal, H.K Pandey and N Rawal, "Engineering Geology", McGraw Hill Education (India) Pvt, Ltd. New Delhi. - 9. M.P Billings, "Structural Geology", CBS Publishers and Distributors, New Delhi. - 10. K. S. Valdiya, " Environmental Geology", Tata Mc Graw Hills. - 11. M. B. Ramachandra Rao, "Outlines of Geophysical Prospecting- A Manual for Geologists", Prasaranga, University of Mysore, Mysore - C Concept Videos or Simula	3. Rese	arch: Recent developments on the concepts – publications in journals; cc	nference	s etc.
A Text books (Title, Authors, Edition, Publisher, Year.) - - 1 to 5 1. P.K. Mukerjee, "A Text Book of Geology", World Press Pvt., Ltd. Kolkatta. In Lib / In Dep. 2. Parbin Singh, "Text Book of Engineering and General Geology", Published by S.K.Kataria and Sons, New Dehli In Lib / In dep B Reference books (Title, Authors, Edition, Publisher, Year.) - 1. Earthquake Tips - Learning Earthquake Design and Construction - C V In Lib/ In dep B Reference hooks (Title, Authors, Edition, Publisher, Year.) - 1. Earthquake Tips - Learning Earthquake Design and Construction - C V In Lib R Murthy Published by National Information Centre of Earthquake In Lib Engineering, Indian Institute of Technology, Kanpur. - 2. Dimitri P Krynine and William R Judd, "Principles of Engineering Geology", BS Publications, Hyderabad. - 4. M Anji Reddy, "Text book of Remote Sensing and Geographical Information System", BS Publications, Hyderabad. - 5. Ground water Assessment, development and Management by K.R. Karanth, Tata Mc Graw Hills - 6. K. Todd, "Groundwater Hydrology", Wiley. 7. D. Venkata Reddy. "Engineering Geology", New Age International Publications, New Delhi. 8. S.K Duggal, H.K Pandey and N Rawal, "Engineering Geology", McGraw Hill Education (India) Pvt, Ltd. New Delhi. -		Details		Availability
1 to 5 1. P.K. Mukerjee, "A Text Book of Geology", World Press Pvt., Ltd. Kolkatta. In Lib / In Dep 2. Parbin Singh, "Text Book of Engineering and General Geology", Published by S.K.Kataria and Sons, New Dehli In Lib/ In dep 8 Reference books (Title, Authors, Edition, Publisher, Year.) - 1. Earthquake Tips - Learning Earthquake Design and Construction - C V In Lib/ In dep 9 Reference books (Title, Authors, Edition, Publisher, Year.) - 1. Earthquake Tips - Learning Earthquake Design and Construction - C V In Lib R Murthy Published by National Information Centre of Earthquake In Lib 9 Geology and Geology and Geology and Geotechnics", CBS Publishers and Distributors, New Delhi. 3. K V G K Gokhale, "Principles of Engineering Geology", BS Publications, Hyderabad. 4. M Anji Reddy, "Text book of Remote Sensing and Geographical Information System", BS Publications, Hyderabad. 5. Ground water Assessment, development and Management by K.R. Karanth, Tata Mc Graw Hills 6. K. Todd, "Engineering Geology", Wiley. 7. D. Venkata Reddy, "Engineering Geology", New Age International Publications, New Delhi. 8. S.K Duggal, H.K Pandey and N Rawal, "Engineering Geology", McGraw Hill Education (India) Pvt, Ltd. New Delhi. 9. M.P Billings, "Structural Geology", CBS Publishers and Distributors, New Delhi. 10. K. S. Valdiya, " Environmental G			in book	
2. Parbin Singh, "Text Book of Engineering and General Geology", Published by S.K.Kataria and Sons, New Dehli In Lib/ In dep B Reference books (Title, Authors, Edition, Publisher, Year.) - 1. Earthquake Tips - Learning Earthquake Design and Construction - C V R Murthy Published by National Information Centre of Earthquake Engineering, Indian Institute of Technology, Kanpur. - 2. Dimitri P Krynine and William R Judd, "Principles of Engineering Geology and Geotechnics", CBS Publishers and Distributors, New Delhi. In Lib 3. K V G K Gokhate, "Principles of Engineering Geology", BS Publications, Hyderabad. - 4. M Anji Reddy, "Text book of Remote Sensing and Geographical Information System", BS Publications, Hyderabad. - 5. Ground water Assessment, development and Management by K.R. Karanth, Tata Mc Graw Hills - 6. K. Todd, "Groundwater Hydrology", Wiley. 7. D. Venkata Reddy, "Engineering Geology", New Age International Publications, New Delhi. - 8. S.K Duggal, H.K Pandey and N Rawal, "Engineering Geology", McGraw Hill Education (India) Pvt, Ltd. New Delhi. - 9. M.P Billings, "Structural Geology", CBS Publishers and Distributors, New Delhi. - 10. K. S. Valdiya, " Environmental Geology", Tata Mc Graw Hills. - 11. M. B. Ramachandra Rao, "Outlines of Geophysical Prospecting- A Manual for Geologists", Prasaranga, University of Mysore, Mysore - C Concept Videos or Simula			-	-
B Reference books (Title, Authors, Edition, Publisher, Year.) - - 1. Earthquake Tips - Learning Earthquake Design and Construction - C V In Lib R Murthy Published by National Information Centre of Earthquake In Lib Engineering, Indian Institute of Technology, Kanpur. 2. Dimitri P Krynine and William R Judd, "Principles of Engineering Geology and Geotechnics", CBS Publishers and Distributors, New Delhi. 3. K V G K Gokhale, "Principles of Engineering Geology", BS Publications, Hyderabad. 4. M Anji Reddy, "Text book of Remote Sensing and Geographical Information System", BS Publications, Hyderabad. 5. Ground water Assessment, development and Management by K.R. Karanth, Tata Mc Graw Hills 6. K. Todd, "Groundwater Hydrology", Wiley. 7. D. Venkata Reddy, "Engineering Geology", New Age International Publications, New Delhi. 8. S.K Duggal, H.K Pandey and N Rawal, "Engineering Geology", McGraw Hill Education (India) Pvt, Ltd. New Delhi. 9. M.P Billings, "Structural Geology", CBS Publishers and Distributors, New Delhi. 9. M.P. Billings, "Structural Geology", CBS Publishers and Distributors, New Delhi. 10. K. S. Valdiya, " Environmental Geology", Tata Mc Graw Hills. 11. M. B. Ramachandra Rao, "Outlines of Geophysical Prospecting- A Manual for Geologists", Prasaranga, University of Mysore, Mysore - C Concept Videos or Simulation for Understanding - - C Concept	1 to 5	2. Parbin Singh, "Text Book of Engineering and General Geology",		In Lib / In Dept
B Reference books (Title, Authors, Edition, Publisher, Year.) - - 1. Earthquake Tips - Learning Earthquake Design and Construction - C V In Lib R Murthy Published by National Information Centre of Earthquake In Lib Engineering, Indian Institute of Technology, Kanpur. 2. Dimitri P Krynine and William R Judd, "Principles of Engineering Geology and Geotechnics", CBS Publishers and Distributors, New Delhi. 3. K V G K Gokhale, "Principles of Engineering Geology", BS Publications, Hyderabad. 4. M Anji Reddy, "Text book of Remote Sensing and Geographical Information System", BS Publications, Hyderabad. 5. Ground water Assessment, development and Management by K.R. Karanth, Tata Mc Graw Hills 6. K. Todd, "Groundwater Hydrology", Wiley. 7. D. Venkata Reddy, "Engineering Geology", New Age International Publications, New Delhi. 8. S.K Duggal, H.K Pandey and N Rawal, "Engineering Geology", McGraw Hill Education (India) Pvt, Ltd. New Delhi. 9. M.P Billings, "Structural Geology", CBS Publishers and Distributors, New Delhi. 9. M.P. Billings, "Structural Geology", CBS Publishers and Distributors, New Delhi. 10. K. S. Valdiya, " Environmental Geology", Tata Mc Graw Hills. 11. M. B. Ramachandra Rao, "Outlines of Geophysical Prospecting- A Manual for Geologists", Prasaranga, University of Mysore, Mysore - C Concept Videos or Simulation for Understanding - - C Concept				In Lib/ In dept
1. Earthquake Tips - Learning Earthquake Design and Construction - C V In Lib R Murthy Published by National Information Centre of Earthquake Engineering. Indian Institute of Technology, Kanpur. 2. Dimitri P Krynine and William R Judd, "Principles of Engineering Geology and Geotechnics", CBS Publishers and Distributors, New Delhi. 3. K V G K Gokhale, "Principles of Engineering Geology", BS Publications, Hyderabad. 4. M Anji Reddy, "Text book of Remote Sensing and Geographical Information System", BS Publications, Hyderabad. 5. Ground water Assessment, development and Management by K.R. Karanth, Tata Mc Graw Hills 6. K. Todd, "Groundwater Hydrology", Wiley. 7. D. Venkata Reddy, "Engineering Geology", New Age International Publications, New Delhi. 8. S.K Duggal, H.K Pandey and N Rawal, "Engineering Geology", McGraw Hill Education (India) Pvt, Ltd. New Delhi. 9. M.P Billings, "Structural Geology", CBS Publishers and Distributors, New Delhi. 10. K. S. Valdiya, "Environmental Geology", Tata Mc Graw Hills. 11. M. B. Ramachandra Rao, "Outlines of Geophysical Prospecting- A Manual for Geologists", Prasaranga, University of Mysore, Mysore C Concept Videos or Simulation for Understanding -	В	Reference books (Title, Authors, Edition, Publisher, Year.)	-	-
C1 https://www.youtube.com/watch?v=rAYiBSo3JKY		 Earthquake Tips - Learning Earthquake Design and Construction - C V R Murthy Published by National Information Centre of Earthquake Engineering, Indian Institute of Technology, Kanpur. Dimitri P Krynine and William R Judd, "Principles of Engineering Geology and Geotechnics", CBS Publishers and Distributors, New Delhi. K V G K Gokhale, "Principles of Engineering Geology", BS Publications, Hyderabad. M Anji Reddy, "Text book of Remote Sensing and Geographical Information System", BS Publications, Hyderabad. Ground water Assessment, development and Management by K.R. Karanth, Tata Mc Graw Hills K. Todd, "Groundwater Hydrology", Wiley. D. Venkata Reddy, "Engineering Geology", New Age International Publications, New Delhi. S.K Duggal, H.K Pandey and N Rawal, "Engineering Geology", McGraw Hill Education (India) Pvt, Ltd. New Delhi. M.P Billings, "Structural Geology", CBS Publishers and Distributors, New Delhi. K. S. Valdiya, "Environmental Geology", Tata Mc Graw Hills. M. B. Ramachandra Rao, "Outlines of Geophysical Prospecting- A 		In Lib
C1 https://www.youtube.com/watch?v=rAYiBSo3JKY	С	Concept Videos or Simulation for Understanding	-	-
		https://www.youtube.com/watch?v=xgvH7FMIUlo		

C3	https://www.youtube.com/watch?v=NhrNJB-43bo		
C4	https://www.youtube.com/watch?v=JLN4i0xHOHk		
C5	https://www.youtube.com/watch?v=-yVBYywW2Zo		
C6	https://www.youtube.com/watch?v=OVz4NxCKAMw		
C7	https://www.youtube.com/results?		
	<u>search_query=hydrology+and+hydrological+cycle</u>		
C8	https://www.youtube.com/watch?v=WrVL_KoTQeo		
C9	https://www.youtube.com/watch?v=zqPMYGDxCr0		
C10	https://www.youtube.com/watch?v=hMFl1CBu_EU		
D	Software Tools for Design	-	-
E	Recent Developments for Research	-	-
	https://www.youtube.com/watch?v=PzPW5msevJ0		
F	Others (Web, Video, Simulation, Notes etc.)	-	-
1	http://diginotes.in/		

4. Course Prerequisites

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

Students must have learnt the following Courses / Topics with described Content

Mod ules	Course Name	Topic / Description	Sem	Remarks	Blooms Level
-					
-					

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Mod ules	Topic / Description	Area	Remarks	Blooms Level
	Internal structure of the earth	Engineering		Level L1
		Geology		
1	Mineralogy	Engineering		L2
		Geology		

2	Petrology	Engineering	L2
		Geology	
2	Land forms	Engineering	L3
		Geology	
3	Earthquake	Engineering	L2
		Geology	
4	Water quality	Engineering	L3,L5
		Geology	
4	Groundwater exploration	Engineering	L4
		Geology	
5	Maps, GPS	Engineering	L5
		Geology	
5	RS&GIS	Engineering	L2,L3,L5
		Geology	

B. OBE PARAMETERS

1. Course Outcomes

Expected learning outcomes of the course, which will be mapped to POs. Identify a max of 2 Concepts per Module. Write 1 CO per Concept.

-		1 CO per Concept.	T I		11	A	DISSU
Mod	Course	Course Outcome	Teach.	Concept	Instr	Assessme	Blooms'
ules	Code.#	At the end of the course, student	Hours		Method	nt	Level
		should be able to				Method	
1	18CV36.1	Student will know about the	05	Earth	BB/PPT	IA	L1
		composition of earth.		Science			Knowledge
1	18CV36.2	Students should be able to	05	Minerals	BB/PPT	IA	L2
		understand earth materials.					Understand
2	18CV36.3	Students should be able to	05	Rock	BB/PPT	IA	L2
		understand rock formation		Formation			Understand
2	18CV36.4	Applying the knowledge in	05	Structural	BB/PPT	IA	L3
		selection of Civil Structures		deformatio			Application
				n			
3	18CV36.5	Students should be able to	05	Land forms	BB/PPT	IA	L2
		understand land forms and					Understand
		weathering					
3	18CV36.6	Applying the knowledge in	05	Earthquake	BB/PPT	IA	L3,L5
		selection of Civil projects and					Application,
		evoluate seismic data by					Evoluate
		seismogrpah	05	Water		IA	
4	18CV36.7	Students should be able to	05	quality	BB/PPT	IA	L4 Analyze
		Analyze aquifer condition and		quality			Anatyze
		resisitivity curves					
4	18CV36.8	Students should be able to	05	Groundwat	RR\bbl	IA	L5
		evoluate the resisitivity data		er			Evoluate
			05	exploration		1.0	
5	18CV36.9	Students should be able to	05	Maps, GPS	RR/ HAI	IA	L2, Application
		understand maps, imageries					Application
5	18CV36.10	Students should be able to	05	RS&GIS	BB/PPT	IA	L3,L5
		apply the knowledge of					Application,
		RS&GIS to generate maps					Evoluate
-	-	Total	50	-	-	-	L1-L5

2. Course Applications

Write 1 or 2 applications per CO.

Students should be able to employ	/ / apply the course learnings to
Students should be upte to empto	

	should be able to employ / apply the course tearnings to m		
Mod	Application Area	CO	Level
ules	Compiled from Module Applications.		
1	Internal structure of earth (terrain condition).	CO1	L1
1	Utilization of earth materials.	CO2	L2
2	In building materials	CO3	L2
	In construction of Civil Engg. Structures	CO4	L3
3	In selection of sites for civil projects	CO5	L2
3	In construction of earthquakes-resistant structures	CO6	L5
4	In identifying aquifer condition	CO7	L4
4	In groundwater exploration and to know the terrain condition	CO8	L5
5	In understanding maps, imageries, GPS	CO9	L3
5	With the knowledge of RS&GIS to generate maps	CO10	L5

3. Mapping And Justification

CO – PO Mapping with mapping Level along with justification for each CO-PO pair. To attain competency required (as defined in POs) in a specified area and the knowledge & ability required to accomplish it.

Mod	Мар	ping	Mapping	Justification for each CO-PO pair	Lev
ules			Level		el
-	CO	PO		'Area': 'Competency' and 'Knowledge' for specified 'Accomplishment'	
1		1,2,4,7		Student will know about the composition of earth.	L1
1	CO2	1,2,4,7	2,1,1,3	Students should be able to understand earth materials.	L2
2	CO3	1,2,4	3,2,2	Students should be able to understand rock formation	L2
2	CO4	1,2,4, 8	3,3,3,2	Applying the knowledge in selection of Civil Structures	L3
3	CO5	1,2,3,4 ,8	2,2,2,3,2	Students should be able to understand land forms and weathering	L2
3	CO6	1,2,3,4 ,7,8		Applying the knowledge in selection of Civil projects and evoluate seismic data by seismogrpah	L5
4	C07	2,3,4, 5,6		Students should be able to identify aquifers and analyze resisitivity curves	L4
4	CO8	2,3,4, 5,6	2,2,3,2,3	Students should be able to evoluate the resisitivity data	L5
5	CO9	1,4,5	2,3,3	Students should be able to understand maps, imageries	L3
5	CO10	1,4,5, 6,7		Students should be able to apply the knowledge of RS&GIS to generate maps	L5

4. Articulation Matrix

CO – PO Mapping with mapping level for each CO-PO pair, with course average attainment.

-	-	Course Outcomes					P	rog	ram	ιΟι	itco	me	s					-
Mod	CO.#	At the end of the course	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS	Lev
ules		student should be able to	1	2	3	4	5	6	7	8	9	10	11	12	O1	02	03	el
1	18CV36.1	Student will know about the	2	2	-	1	-		1	-	-	-	-	-	-	-	-	L2
		composition of earth.																
1	18CV36.2	Students should be able to	2	1	-	1	-	-	3	-	-	-	-	-	-	-	-	L2
		understand earth materials.																
2	18CV36.3	Students should be able to	3	2	-	2	-	-	-	-	-	-	-	-	-	-	-	L2
		understand rock formation																
2		Applying the knowledge in	3	3	-	3	-	-	-	2	-	-	-	-	-	-	-	L3
		selection of Civil Structures																
3	18CV36.5	Students should be able to	2	2	2	3	-	-	-	2	-	-	-	-	-	-	-	L2
		understand land forms and																
		weathering																

3	18CV36.6	Applying the knowledge in selection of Civil projects and evoluate seismic data by seismogrpah		2	2	3		-	3	2	-	-	-	-	-	-	-	L2
4	18CV36.7	Students should be able to identify aquifers and analyze resisitivity curves		2	2	3	2	3	-	-	-	-	-	1	-	-	-	L3
4	18CV36.8	Students should be able to evoluate the resisitivity data		2	2	3	2	3	-	1	-	-	-	1	1	-	-	L2
5	18CV36.9	Students should be able to understand maps, imageries		-	-	3	3	-	-	-	-	-	-	1	-	-	-	L2
5	18CV36.10	Students should be able to apply the knowledge of RS&GIS to generate maps		-	-	3	3	3	3	-	-	-	-	_	-	-	-	L3
-	CS501PC	Average attainment (1, 2, or 3)	2.4	2.5	2	2.6	2.8	2.9	2.3									-
-		1.Engineering Knowledge; 2.Probl 4.Conduct Investigations of Compl Society; 7.Environment and Su 10.Communication; 11.Project M S1.Software Engineering; S2.Data E	lem lex l usta 1an	Ar Prol nina age	naly bler bilit eme	rsis; ns; ; y; nt	3.Ľ 5.M 8.E an	Desi ode thic d	ign ern :s; Fir	/ Tool 9.lr nand	l Us ndiv ce;	age idu 12	: 2; 6. al	The an	e En d	gin Tea	eer Imv	and ′ork;

5. Curricular Gap and Content

Topics & contents not covered (from A.4), but essential for the course to address POs and PSOs.

Mod	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
ules					
1					
2					
3					
4					
5					

6. Content Beyond Syllabus

Topics & contents required (from A.5) not addressed, but help students for Placement, GATE, Higher Education, Entrepreneurship, etc.

Mod	Gap Topic	Actions Planned	Schedule	Resources	PO Mapping
ules			Planned	Person	
1					
1					
2					
2					
3					
3					
4					
4					
5					
5					

C. COURSE ASSESSMENT

1. Course Coverage

Assessment of learning outcomes for Internal and end semester evaluation. Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

Mod	Title	Teach.			f quest		Exam		CO	Levels
ules		Hours	CIA-1	CIA-2	CIA-3	Asg	Extra	SEE		
							Asg			
1	Introduction and Mineralogy	10	2	-	-	1	-	1	CO1, CO2	L2
2	Petrology	10	2	-	-	1	-	1	CO3, CO4	L3
3	Geomorphology and Seismology	10	-	2	-	1	-	1	CO5, CO6	L5
4	Hydrogeology	10	-	2	2	1	1	1	CO7, C08	L4
5	Geodesy	10	-	-	2	1	2	1	CO9, CO10	L5
-	Total	50	4	4	4	5	3	5	-	-

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

Mod	Evaluation	Weightage in	СО	Levels
ules		Marks		
	CIA Exam – 1	15	CO1, CO2, CO3,Co4	L2,L4,L3,L2
3, 4	CIA Exam – 2	15	CO5, CO6, CO7, C08	L2,L3,L3,L4
5	CIA Exam – 3	15	CO9, CO10	L2,L2
	Assignment - 1	05	CO1, CO2, CO3,Co4	L2,L4,L3,L2
3, 4	Assignment - 2	05	CO5, CO6, CO7, C08	L2,L3,L3,L4
5	Assignment - 3	05	CO9, CO10	L2,L2
	Seminar - 1	05	CO1, CO2, CO3,Co4	L2,L4,L3,L2
3, 4	Seminar - 2	05	CO5, CO6, CO7, C08	L2,L3,L3,L4
5	Seminar - 3	05	CO9, CO10	L2,L2
	Quiz - 1		_	-
3, 4	Quiz - 2		-	-
5	Quiz - 3		-	-
1 - 5	Other Activities – Mini Project	-	CO9, CO10	L2,L2
	Final CIA Marks	20	-	-

D1. TEACHING PLAN - 1

Module - 1

Title:	Introduction	Appr	10 Hrs
	Mineralogy	Time:	
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Know about the composition of earth.	CO1	L2
2	Understand earth materials.	CO2	L2
b	Course Schedule	-	-
Class No	o. Module Content Covered		Level
1	Application of Earth Science in Civil Engineering Practices	CO1	L1
2	Understanding the earth, internal structure and composition	CO1	L1
3	Mineral properties, composition and their use in the manufacture of construction materials	CO2	L2
4	Quartz Group (Glass); Feldspar Group (Ceramic wares and Flooring tiles)	CO2	L2
5	Kaolin (Paper, paint and textile); Asbestos (AC sheets)	CO2	L2
6	Carbonate Group (Cement); Gypsum (POP, gypsum sheets, cement)	CO2	L2
7	Mica Group (Electrical industries)	CO2	L2
8	Ore minerals - Iron ores (Steel)	CO2	L2
9	Chromite (Alloy)	CO2	L2
10	Bauxite (aluminum); Chalcopyrite (copper)	CO2	L2
С	Application Areas	СО	Level
1	Internal structure of earth (terrain condition).	CO1	L1
2	Utilization of earth materials.	CO2	L2
d	Review Questions	_	-
1	What are the applications of Earth Science in Civil Engineering?	CO1	L1
2	With a neat diagram explain internal structure of the earth.	CO1	L2
3	Define mineral and its physical properties.	CO2	L2
4	Explain how quartz group of minerals used in industry.	CO2	L2
5	What are the industrial uses of mica.	CO2	L2
е	Experiences	-	-
1		CO1	L2
2			
3			<u> </u>
4		CO2	L3
5			

Module – 2

itle:	Introduction and Mineralogy	Appr Time:	10 Hrs
a	Course Outcomes	-	Bloom
-	The student should be able to:	-	Level
1	Understand rock formation	CO3	L2
2	Apply the knowledge in selection of Civil Structures	CO4	L3
b	Course Schedule	-	-
ass No	Module Content Covered	со	Level
11	Formation, Classification and Engineering Properties	CO3	L2
12	Rock as construction material, concrete aggregate, railway ballast, roofing, flooring, cladding and foundation	CO3	L2
13	Deformation of rocks, Development of Joints, Folds, Faults and Unconformities	CO4	L2
14	Their impact in the selection of sites for Dams, Reservoirs, Tunnels, Highways and Bridges	CO4	L3
15	Rock Quality Determination (RQD), Rock Structure Rating (RSR)	CO4	L3
18	Igneous Rocks - Granite, Gabbro, Dolerite, Basalt	CO3	L3
19	Sedimentary rocks - Sandstone, Shale, Limestone, Laterite	CO3	L3
20	Metamorphic rocks - Gneiss, Quartzite, Slate, Charnockite: Decorative stones - Porphyries, Marble and Quartzite	CO3	L3
с	Application Areas	<u> </u>	
1		CO	Level
T	In building materials	CO3	Level
2	In building materials In construction of Civil Engg. Structures		
2	In construction of Civil Engg. Structures	CO3	L2
2 d	In construction of Civil Engg. Structures Review Questions	CO3 CO4	L2 L3 -
2	In construction of Civil Engg. Structures	CO3	L2
2 d 06	In construction of Civil Engg. Structures Review Questions What is rock? Add note on classification of rock. Explain the uses of different types of rocks in civil engineering. With a neat diagram explain folds.	CO3 CO4 - CO3	L2 L3 - L2
2 d 06 07	In construction of Civil Engg. Structures Review Questions What is rock? Add note on classification of rock. Explain the uses of different types of rocks in civil engineering. With a neat diagram explain folds. What are the geological considerations in selecting a site for tunnel in the folded area?	CO3 CO4 - CO3 CO3 CO3 CO4	L2 L3 - L2 L2 L2 L2 L2 L3
2 06 07 08 9 10	In construction of Civil Engg. Structures Review Questions What is rock? Add note on classification of rock. Explain the uses of different types of rocks in civil engineering. With a neat diagram explain folds. What are the geological considerations in selecting a site for tunnel in the folded area? What are the geological considerations in selecting a site for dams/reservoirs in the faulted area?	CO3 CO4 CO3 CO3 CO3 CO4 CO4	L2 L3 L2 L2 L2 L2 L3 L3
2 06 07 08 9	In construction of Civil Engg. Structures Review Questions What is rock? Add note on classification of rock. Explain the uses of different types of rocks in civil engineering. With a neat diagram explain folds. What are the geological considerations in selecting a site for tunnel in the folded area? What are the geological considerations in selecting a site for dams/reservoirs	CO3 CO4 - CO3 CO3 CO3 CO4	L2 L3 - L2 L2 L2 L2 L2 L3
2 06 07 08 9 10	In construction of Civil Engg. Structures Review Questions What is rock? Add note on classification of rock. Explain the uses of different types of rocks in civil engineering. With a neat diagram explain folds. What are the geological considerations in selecting a site for tunnel in the folded area? What are the geological considerations in selecting a site for dams/reservoirs in the faulted area?	CO3 CO4 CO3 CO3 CO3 CO4 CO4	L2 L3 L2 L2 L2 L3 L3
2 06 07 08 9 10 11	In construction of Civil Engg. Structures Review Questions What is rock? Add note on classification of rock. Explain the uses of different types of rocks in civil engineering. With a neat diagram explain folds. What are the geological considerations in selecting a site for tunnel in the folded area? What are the geological considerations in selecting a site for dams/reservoirs in the faulted area? Add a note on different types sedimentary rocks.	CO3 CO4 CO3 CO3 CO3 CO4 CO4	L2 L3 L2 L2 L2 L3 L3
2 06 07 08 9 10 11 11 e 1 2	In construction of Civil Engg. Structures Review Questions What is rock? Add note on classification of rock. Explain the uses of different types of rocks in civil engineering. With a neat diagram explain folds. What are the geological considerations in selecting a site for tunnel in the folded area? What are the geological considerations in selecting a site for dams/reservoirs in the faulted area? Add a note on different types sedimentary rocks.	CO3 CO4 CO3 CO3 CO3 CO4 CO4 CO4 CO4	L2 L3 L2 L2 L2 L3 L3 L3 -
2 06 07 08 9 10 11 11 e 1	In construction of Civil Engg. Structures Review Questions What is rock? Add note on classification of rock. Explain the uses of different types of rocks in civil engineering. With a neat diagram explain folds. What are the geological considerations in selecting a site for tunnel in the folded area? What are the geological considerations in selecting a site for dams/reservoirs in the faulted area? Add a note on different types sedimentary rocks.	CO3 CO4 CO3 CO3 CO3 CO4 CO4 CO4 CO4	L2 L3 L2 L2 L2 L3 L3 L3 -

E1. CIA EXAM – 1

a. Model Question Paper - 1

			minute	S	
Cour	se:	Engineering Geology			
-	-		Marks	CO	Level
1	а	With a neat sketch explain the internal structure of the earth.	5	CO3	L2
	b	What are the applications of Engg. Geology in civil engineering?	5	CO3	L2
	С	Write physical properties of Quartz Group of minerals and its industrial use.	5	CO3	L2
		or			
2	а	Define mineral and its physical properties.	5	CO3	L2
	b	What are rock forming and ore minerals? Add a note on chalcopyrite and its uses in industry?	5	CO3	L2
	С	Write short note on asbestos and gypsum.	5	CO3	L2
3	а	What are the impacts of folds in the selection of sites for tunnels ?	5	CO4	L3
	b	What are igneous rocks? Explain with examples and their uses in construction.	5	CO3	L3
	С	What are the impacts of faults and joints in the selection of sites for reservoirs?	5	CO4	L3
		Or			
4	а	Write engineering properties of granite, basalt and sandstone.	5	CO3	L3
	b	What are metamorphic rocks? Explain with examples and their uses in construction.	5	CO3	L3
	С	With neat sketches define faults and folds.	5	CO3	L3

b. Assignment -1

Note: A distinct assignment to be assigned to each student.

	Model Assignment Questions											
				Model	Assignmer							
Crs C	ode:	18CV36	Sem:	III	Marks:	5 / 10	Time:	9	0 – 120 I	minutes	5	
Cours	se:	Enginee	ring Geology									
Note:	Each	student	to answer 2-3	assignment	s. Each as	signment	carries equal	mar	·k.			
SNo USN Assignment Description Marks											Level	
1	1KT1		Applicatior Practices	of Earth	n Scienc	e in Civ	/il Enginee	ring	5	CO1	L1	
2	1KT1		Understand compositio	-	earth, i	nternal	structure	and	5	CO1	L1	
3	1KT1		Mineral prc manufactu					the	5	CO2	L2	
4	1KT1		Quartz Gro wares and			lspar Gr	roup (Cera	mic	: 5	CO2	L2	
5	1KT1		Kaolin (Pa sheets)	per, pair	it and i	textile);	Asbestos	(AC	5	CO2	L2	
6	1KT1	6CV035	Carbonate	Group (C	ement); (Gypsum	(POP, gyp	sum	<mark>ז 5</mark>	CO2	L2	

		sheets, cement)			
7	1KT16CV038	Mica Group (Electrical industries)	5	CO2	L2
8	1KT16CV039	Ore minerals - Iron ores (Steel)	5	CO2	L2
9	1KT16CV042	Chromite (Alloy)	5	CO2	L2
10	1KT16CV047	Bauxite (aluminum); Chalcopyrite (copper)	5	CO2	L2
11		Formation, Classification and Engineering	5	CO3	
		Properties	5		
12	1KT17CV007	Rock as construction material, concrete aggregate, railway ballast, roofing, flooring, cladding and foundation	5	CO3	L2
13	1KT17CV008	Deformation of rocks, Development of Joints, Folds, Faults and Unconformities	5	CO4	L2
14	1KT17CV010	Their impact in the selection of sites for Dams, Reservoirs, Tunnels, Highways and Bridges	5	CO4	L3
15	1KT17CV011	Rock Quality Determination (RQD), Rock Structure Rating (RSR)	5	CO4	L3
16	1KT17CV012	Igneous Rocks - Granite, Gabbro, Dolerite, Basalt	5	CO3	L3
17	1KT17CV013	Sedimentary rocks - Sandstone, Shale, Limestone, Laterite	5	CO3	L3
18	1KT17CV015	Metamorphic rocks - Gneiss, Quartzite, Slate, Charnockite: Decorative stones - Porphyries, Marble and Quartzite	5	CO3	L3
19	1KT17CV017	Rock as construction material, concrete aggregate, railway ballast, roofing, flooring, cladding and foundation	5	CO3	L2
20	1KT17CV019	Deformation of rocks, Development of Joints, Folds, Faults and Unconformities	5	CO4	L2
21	1KT17CV020	Their impact in the selection of sites for Dams, Reservoirs, Tunnels, Highways and Bridges	5	CO4	L3
22	1KT17CV021	Rock Quality Determination (RQD), Rock Structure Rating (RSR)	5	CO4	L3
23	1KT17CV023	Igneous Rocks - Granite, Gabbro, Dolerite, Basalt	5	CO3	L3
24		Sedimentary rocks - Sandstone, Shale, Limestone, Laterite	5	CO3	L3
25	1KT17CV025	Metamorphic rocks - Gneiss, Quartzite, Slate, Charnockite: Decorative stones - Porphyries, Marble and Quartzite	5	CO3	L3
26	1KT17CV026	Rock as construction material, concrete aggregate, railway ballast, roofing, flooring, cladding and foundation	5	CO3	L2
27	1KT17CV412	Deformation of rocks, Development of Joints, Folds, Faults and Unconformities	5	CO4	L2
28	1KT18CV400	Their impact in the selection of sites for Dams, Reservoirs, Tunnels, Highways and Bridges	5	CO4	L3

e 5 5 e, 5	CO4 CO3	L3 L3
		10
e, 5		L3
	CO3	L3
5	CO3	L3
ring 5	CO1	L1
and 5	CO1	L1
the 5	CO2	L2
mic 5	CO2	L2
(AC 5	CO2	L2
sum 5	CO2	L2
5	CO2	L2
5	CO2	L2
5	CO2	L2
5	CO2	L2
5	CO3	L2
5	CO3	L2
lds, 5	CO4	L2
5	CO4	L3
e 5	CO4	L3
5	CO3	L3
	CO3	L3
5	CO3	L3
5	CO3	L2
lds, 5	CO4	L2
	and 5 and 5 the 5 imic 5 (AC 5 sum 5 lds, 5 re 5 se, 5	and 5 CO1 the 5 CO2 imic 5 CO3 imic 5 CO4 imic 5 CO3 imic 5 CO3

		COOKSE FEAN - CAT 2019-20			
53	1KT17CV034	Their impact in the selection of sites for Dams, Reservoirs,	5	CO4	L3
		Tunnels, Highways and Bridges			
54	1KT17CV035	Rock Quality Determination (RQD), Rock Structure Rating (RSR)	5	CO4	L3
55	1KT17CV036	Igneous Rocks - Granite, Gabbro, Dolerite, Basalt	5	CO3	L3
56		Sedimentary rocks - Sandstone, Shale, Limestone, Laterite	5	CO3	L3
57	1KT17CV038	Metamorphic rocks - Gneiss, Quartzite, Slate, Charnockite: Decorative stones - Porphyries, Marble and Quartzite	5	CO3	L3
58	1KT17CV040	Rock as construction material, concrete aggregate, railway ballast, roofing, flooring, cladding and foundation	5	CO3	L2
59	1KT17CV041	Deformation of rocks, Development of Joints, Folds, Faults and Unconformities	5	CO4	L2
60	1KT17CV042	Their impact in the selection of sites for Dams, Reservoirs, Tunnels, Highways and Bridges	5	CO4	L3
61	1KT17CV050	Rock Quality Determination (RQD), Rock Structure Rating (RSR)	5	CO4	L3
62	1KT17CV053	Igneous Rocks - Granite, Gabbro, Dolerite, Basalt	5	CO3	L3
63		Sedimentary rocks - Sandstone, Shale, Limestone, Laterite	5	CO3	L3
64	1KT18CV412	Metamorphic rocks - Gneiss, Quartzite, Slate, Charnockite: Decorative stones - Porphyries, Marble and Quartzite	5	CO3	L3
65	1KT18CV413	Decorative stones - Porphyries	5	CO3	L3
66		Marble and Quartzite	5	CO3	L3
67		Application of Earth Science in Civil Engineering Practices	5	CO1	L1
68	1KT18CV416	Understanding the earth, internal structure and composition	5	CO1	L1
69	1KT18CV417	Mineral properties, composition and their use in the manufacture of construction materials	5	CO2	L2
70	1KT18CV418	Quartz Group (Glass); Feldspar Group (Ceramic wares and Flooring tiles)	5	CO2	L2
71	1KT18CV419	Kaolin (Paper, paint and textile); Asbestos (AC sheets)	5	CO2	L2
72		Carbonate Group (Cement); Gypsum (POP, gypsum sheets, cement)	5	CO2	L2
73	1KT18CV421	Mica Group (Electrical industries)	5	CO2	L2
74		Ore minerals - Iron ores (Steel)	5	CO2	L2
75		Chromite (Alloy)	5	CO2	L2
76		Bauxite (aluminum); Chalcopyrite (copper)	5	CO2	L2
77		Kaolin (Paper, paint and textile); Asbestos (AC sheets)	5	CO2	L2

D2. TEACHING PLAN - 2

Module - 3

Title:	Geomorphology and Seismology	Appr	10 Hrs
		Time:	
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Understand land forms and weathering	CO5	L2
2	Apply the knowledge in selection of Civil projects and evoluate seismic data by seismogrpah	CO6	L3
b	Course Schedule		
Class No	Module Content Covered	со	Level
1	Landforms – Classification, Rock weathering, types	CO5	L2
	and its effects on Civil Engineering Projects		
2	Study of Geomorphological aspects in the selection of sites for	CO5	L2
	Dams, Reservoirs, Tunnels, Highways and Bridges		
3	Watershed management, Floods and their control	CO5	L3
4	River valley, Drainage pattern – parameters and development	CO5	L3
5	Coastlines and their engineering considerations	CO5	L3
6	Earthquake - Causes and Effects, Seismic waves, Engineering problems related to Earthquakes	CO6	L5
7	Earthquake intensity, Richter Scale, Seismograph	CO6	L5
8	Seismic zones- World and India	CO6	L5
9	Tsunami – causes and effects. Early warning system	CO6	L5
10	Reservoir Induced Seismicity; Landslides – causes and their control	CO6	L5

Module – 4

Title:	Hydrogeology	Appr Time:	10Hrs
а	Course Outcomes	-	Blooms
_	The student should be able to:	_	Level
1	Identify aquifers and analyze resisitivity curves	C07	L4
2	Evoluate the resisitivity data	CO8	L5
b	Course Schedule		
Class No	Portion covered per hour	-	-
1	Hydrological cycle, Occurrence of Groundwater in different terrains -Weathered, Hard and Stratified rocks	CO7	L4
2	Determination of Quality aspects - SAR, RSC and TH of Groundwater. Groundwater Pollution	CO7	L4
3	Groundwater Exploration- Electrical Resistivity	CO7	L5
4	Seismic methods, Resistivity curves	CO8	L5
5	Water Bearing Formations, Aquifer types	CO8	L5
6	Parameters - Porosity, Specific yield and retention,	CO8	L5
7	Permeability, Transmissibility and Storage Coefficient	CO8	L5
8	Springs and Artesian Wells	CO8	L5
9	Artificial Recharging of Groundwater,	CO8	L5
10	Sea water intrusion and remedies	CO8	L5

с	Application Areas	со	Leve
1	In identifying aquifer condition	CO7	L4
2	In groundwater exploration and to know the terrain condition	CO8	L5
d	Review Questions	-	-
1	With a neat diagram explain hydrological cycle.	CO7	L4
2	Add a note on quality aspects of SAR, RSC and TH of Groundwater.	CO7	L4
3	With neat circuit diagram (Schlumberger) explain how electrical resistivity helps in groundwater exploration.	CO7	L5
4	What are aquifers? Add a note on confined aquifer.	CO8	L5
5	Define the terms porosity, specific yield and retention.	CO8	L5
6	Add a note on artificial recharge of groundwater.	CO8	L5
7	What are the causes of sea water intrusion. Explain their remedies.	CO8	L5
е	Experiences	-	
1			
2			
<u>3</u> 4			
5			

E2. CIA EXAM – 2

a. Model Question Paper - 2

Crs (Crs Code: 18CV36 Sem: III Marks: 30 Time: 90 minutes					
Cour	rse:	Engineering Geology				
-	-	Note: Answer any 2 questions, each carry equal marks.	Marks	СО	Level	
1	а	Write a short note on classification of landforms.	5	CO3	L3	
	b	Explain watershed management.	5	CO3	L3	
	С	What is mechanical weathering?	5	CO3	L3	
		or				
2	а	What are the causes of and effects of earthquake?	5	CO3	L3	
	b	Add a note on drainage pattern.	5	CO3	L3	
	С	Write a short on floods and its control.	5	CO3	L3	
3	а	Add a note on aquifers and its types with neat sketches.	10	CO4	L3	
	b	What are seismic waves? How it helps in defining the internal structure of the earth.	5	CO3	L3	
		or				
4		Explain hydrological cycle with a neat diagram.	5	CO3	L3	
		What are the geomorphological aspects in the selection of sites for dams/reservoirs, tunnels, highways and bridges	10	CO4	L3	

b. Assignment – 2

		Model Assignment Questions			
Crs C	-		0 - 120	minute	S
Cours		ring Geology to answer 2-3 assignments. Each assignment carries equal mar			
SNo	1	Assignment Description	Marks	со	Level
1		Landforms – Classification, Rock weathering, types	5	CO5	Level L2
-		and its effects on Civil Engineering Projects		000	
2	1KT15CV088	Study of Geomorphological aspects in the selection	5	CO5	L2
	1111000000	of sites for Dams, Reservoirs, Tunnels, Highways		000	
		and Bridges			
3	1KT16CV020	Watershed management, Floods and their control	5	CO5	L3
4		River valley, Drainage pattern – parameters and	5	CO5	L3
		development			
5	1KT16CV028	Coastlines and their engineering considerations	5	CO5	L3
6	1KT16CV035	Earthquake - Causes and Effects, Seismic waves,	5	CO6	L5
		Engineering problems related to Earthquakes			
7	1KT16CV038	Earthquake intensity, Richter Scale, Seismograph	5	CO6	L5
8	1KT16CV039	Seismic zones- World and India	5	CO6	L5
9	1KT16CV042	Tsunami – causes and effects. Early warning system	5	CO6	L5
10	1KT16CV047	Reservoir Induced Seismicity; Landslides – causes	5	CO6	L5
		and their control			
11	1KT16CV048	Hydrological cycle, Occurrence of Groundwater in	5	C07	L4
		different terrains -Weathered, Hard and Stratified			
		rocks			
12	1KT17CV007	Determination of Quality aspects - SAR, RSC and TH	5	CO7	L4
		of Groundwater. Groundwater Pollution			
13	1KT17CV008	Groundwater Exploration- Electrical Resistivity	5	C07	L5
14	1KT17CV010	Seismic methods, Resistivity curves	5	CO8	L5
15	1KT17CV011	Water Bearing Formations, Aquifer types	5	CO8	L5
16	1KT17CV012	Parameters - Porosity, Specific yield and retention,	5	CO8	L5
17	1KT17CV013	Permeability, Transmissibility and Storage	5	CO8	L5
		Coefficient			
18	1KT17CV015	Springs and Artesian Wells	5	CO8	L5
19		Artificial Recharging of Groundwater,	5	CO8	L5
20	1KT17CV019	Sea water intrusion and remedies	5	CO8	L5
21	1KT17CV020	Landforms – Classification, Rock weathering, types	5	CO5	L2
		and its effects on Civil Engineering Projects			
22	1KT17CV021	Study of Geomorphological aspects in the selection		CO5	L2
		of sites for Dams, Reservoirs, Tunnels, Highways	5		
		and Bridges			
23	1KT17CV023	Watershed management, Floods and their control	5	CO5	L3
24	1KT17CV024	River valley, Drainage pattern – parameters and development	5	CO5	L3
25	1KT17CV025	Coastlines and their engineering considerations	5	CO5	L3
26	1KT17CV026	Earthquake - Causes and Effects, Seismic waves,	5	CO6	
		Engineering problems related to Earthquakes			
27	1KT17CV412	Earthquake intensity, Richter Scale, Seismograph	5	CO6	L5
28	1KT18CV400	Seismic zones- World and India	5	CO6	 L5
				· -	

29	1KT18CV401	Tsunami – causes and effects. Early warning system	5	CO6	L5
39		Reservoir Induced Seismicity; Landslides – causes and their control	5	CO6	L5
31	1KT18CV403	Hydrological cycle, Occurrence of Groundwater in different terrains -Weathered, Hard and Stratified rocks	5	CO7	L4
32		Determination of Quality aspects - SAR, RSC and TH of Groundwater. Groundwater Pollution	5	CO7	L4
33	1KT18CV405	Groundwater Exploration- Electrical Resistivity	5	CO7	L5
34	1KT18CV406		5	CO8	L5
35	1KT18CV407	Water Bearing Formations, Aquifer types	5	CO8	L5
36	1KT18CV408	Parameters - Porosity, Specific yield and retention,	5	CO8	L5
37	1KT18CV409	Permeability, Transmissibility and Storage Coefficient	5	CO8	L5
38	1KT18CV410	Springs and Artesian Wells	5	CO8	L5
39	1KT18CV411	Artificial Recharging of Groundwater,	5	CO8	L5
40	1KT16CV055	Sea water intrusion and remedies	5	CO8	L5
41	1KT16CV060	Landforms – Classification, Rock weathering, types and its effects on Civil Engineering Projects	5	CO5	L2
42	1KT16CV077	Study of Geomorphological aspects in the selection of sites for Dams, Reservoirs, Tunnels, Highways and Bridges	5	CO5	L2
43	1KT16CV082	Watershed management, Floods and their control	5	CO5	L3
44		River valley, Drainage pattern – parameters and development	5	CO5	L3
45	1KT16CV094	Coastlines and their engineering considerations	5	CO5	L3
46		Earthquake - Causes and Effects, Seismic waves, Engineering problems related to Earthquakes	5	CO6	L5
47	1KT16CV102	Earthquake intensity, Richter Scale, Seismograph	5	CO6	L5
48	1KT17CV028	Seismic zones- World and India	5	CO6	L5
49	1KT17CV029	Tsunami – causes and effects. Early warning system	5	CO6	L5
50	1KT17CV031		5	CO6	L5
51	1KT17CV032	Hydrological cycle, Occurrence of Groundwater in different terrains -Weathered, Hard and Stratified rocks	5	CO7	L4
52	1KT17CV033	Determination of Quality aspects - SAR, RSC and TH of Groundwater. Groundwater Pollution	5	CO7	L4
53	1KT17CV034	Groundwater Exploration- Electrical Resistivity	5	C07	L5
54	1KT17CV035		5	CO8	L5
55		Water Bearing Formations, Aquifer types	5	CO8	L5
56	1KT17CV037	Parameters - Porosity, Specific yield and retention,	5	CO8	L5
57	1KT17CV038	Permeability, Transmissibility and Storage Coefficient	5	CO8	L5
58	1KT17CV040		5	CO8	L5
59	1KT17CV041		5	CO8	L5
60	1KT17CV042		5	CO8	L5
61	1KT17CV050	Landforms – Classification, Rock weathering, types and its effects on Civil Engineering Projects	5	CO5	L2

				,	
62	1KT17CV053	Study of Geomorphological aspects in the selection of sites for Dams, Reservoirs, Tunnels, Highways	5	CO5	L2
		and Bridges			
63	1KT17CV055	Watershed management, Floods and their control	5	CO5	L3
64	1KT18CV412	River valley, Drainage pattern – parameters and development	5	CO5	L3
65	1KT18CV413	Coastlines and their engineering considerations	5	CO5	L3
66	1KT18CV414	Earthquake - Causes and Effects, Seismic waves,	5	CO6	L5
		Engineering problems related to Earthquakes			
67	1KT18CV415	Earthquake intensity, Richter Scale, Seismograph	5	CO6	L5
68	1KT18CV416	Seismic zones- World and India	5	CO6	L5
69	1KT18CV417	Tsunami – causes and effects. Early warning system	5	CO6	L5
70	1KT18CV418	Reservoir Induced Seismicity; Landslides – causes and their control	5	CO6	L5
71	1KT18CV419	Hydrological cycle, Occurrence of Groundwater in different terrains -Weathered, Hard and Stratified rocks	5	CO7	L4
72	1KT18CV420	Determination of Quality aspects - SAR, RSC and TH of Groundwater. Groundwater Pollution	5	CO7	L4
73	1KT18CV421	Groundwater Exploration- Electrical Resistivity	5	CO7	L5
74	1KT18CV422	Seismic methods, Resistivity curves	5	CO8	L5
75	1KT18CV423	Water Bearing Formations, Aquifer types	5	CO8	L5
76	1KT18CV424	Parameters - Porosity, Specific yield and retention,	5	CO8	L5
77	1KT18CV425	Permeability, Transmissibility and Storage Coefficient	5	CO8	L5

D3. TEACHING PLAN - 3

Module – 5

Title:	Geodesy	Appr	10 Hrs
	•	Time:	
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Understand maps, imageries	CO9	L3
2	Apply the knowledge of RS&GIS to generate maps	CO10	L5
b	Course Schedule	-	-
Class N	Portion covered per hour	-	-
1	Study of Topographic maps and Contour maps	CO9	L3
2	Remote Sensing – Concept.	CO10	L5
3	Application and its Limitations	CO10	L5
4	Geographic Information System	CO10	L5
5	Geographic Information System	CO10	L5
6	Global Positioning System – Concept and their use resource	CO10	L5
	mapping		
7	LANDSAT Imagery – Definition and its use	CO9	L3
8	Impact of Mining on Environment	CO9	L3

9	Impact of Quarrying and Reservoirs on Environment.	CO9	L3
10	Natural Disasters and their mitigation.	CO9	L3
1	In understanding maps, imageries, GPS	CO9	L3
2	With the knowledge of RS&GIS to generate maps	CO10	L5
d	Review Questions	-	-
1	What are the applications of topographic maps and contour	CO9	L3
	maps?		
2	What are the applications of Remote Sensing?	CO10	L5
3	What are the applications of GIS and GPS?	CO10	L5
4	Define LANDSAT Imagery and its uses.	CO9	L3
5	What are the impact of Mining and Quarrying on Environment?	CO9	L3
6	What are the Impact of and Reservoirs on Environment?	CO9	L3
7	Explain natural disasters and their mitigation.	CO9	L3
е	Experiences	_	_
1		CO10	L2
2		CO9	
3			
4		CO9	L3
5			

E3. CIA EXAM – 3

a. Model Question Paper - 3

Crs (Code	18CV36	Sem:		Marks:	30	Time: 90	o minute	es	
Cou	rse:	Engineerin	g Geology							
-	-	Note: Ansv	ver any 2 qu	lestions,	each carry eo	lual marl	ks.	Marks	CO	Level
1	a	Define the	terms SAR a	and TH.				5	CO7	L2
	b	Explain ho exploratior		ful in groundwate	r 5	CO7	L5			
	С	What is sal	line water in	trusion.				5	CO8	L2
					or					
2	a	With a nea	t sketch exp	olain artifi	icial technique	of groun	ndwater recharge.	5	CO7	L3
	b	Define por	osity and pe	rmeabili	ty.			5	CO7	L2
	С	Define spe	cific yield ar	nd retent	ion.			5	C07	L2
3	a	What are to	opographic	and cont	tour maps?			5	COg	L2
	b	What are t	he applicati	ons of re	mote sensing	n moder	n ages?	5	CO10	L3
	С	Define GPS	S.					5	CO10	L2
					or					
4	a	What are t	he applicati	ons of Gl	S?			5	CO10	L3
	b	What are t	he impacts	of mining	g and quarrying	g on envi	ronment.	5	CO9	L2
	С	Write a sho	ort on natura	al disaste	r and its mitiga	ation.		5	CO10	L2

	Model Assignment Questions										
Crs C	Crs Code: 18CV36 Sem: III Marks: 5 / 10 Time:					90 – 120 minutes					
Cours	se:	Enginee	ring Geolo	gy							
Note:	Note: Each student to answer 2-3 assignments. Each assignment carries equal mark.										
SNo	ι	JSN		Α	ssignment Des	scription		Marks	СО	Level	
1	1KT1	5CV053	What are	e the app	lications of t	opograpl	nic maps and	5	CO9	L3	
contour maps?											
2 1KT15CV088 What are the applications of Remote Sensing?					5	CO10	L5				

3		What are the applications of GIS and GPS?	5	CO10	L5
4	1KT16CV026	Define LANDSAT Imagery and its uses.	5	CO9	L3
5	1KT16CV028	What are the impact of Mining and Quarrying on Environment?	5	CO9	L3
6	1KT16CV035	What are the Impact of and Reservoirs on Environment?	5	CO9	L3
7	1KT16CV038	Explain natural disasters and their mitigation.	5	CO9	L3
8	1KT16CV039	What are the applications of topographic maps and contour maps?	5	CO9	L3
9	1KT16CV042	What are the applications of Remote Sensing?	5	CO10	L5
10	1KT16CV047	What are the applications of GIS and GPS?	5	CO10	L5
11	1KT16CV048	Define LANDSAT Imagery and its uses.	5	CO9	L3
12	1KT17CV007	What are the impact of Mining and Quarrying on Environment?	5	CO9	L3
13		What are the Impact of and Reservoirs on Environment?	5	CO9	L3
14	1KT17CV010	Explain natural disasters and their mitigation.	5	CO9	L3
15	1KT17CV011	Water Bearing Formations, Aquifer types	5	CO8	L5
16	1KT17CV012	Parameters - Porosity, Specific yield and retention,	5	CO8	L5
17	1KT17CV013	Permeability, Transmissibility and Storage Coefficient	5	CO8	L5
18	1KT17CV015	Springs and Artesian Wells	5	CO8	L5
19	1KT17CV017	Artificial Recharging of Groundwater,	5	CO8	L5
20	1KT17CV019	Sea water intrusion and remedies	5	CO8	L5
21	1KT17CV020	Landforms – Classification, Rock weathering, types and its effects on Civil Engineering Projects	5	CO5	L2
22	1KT17CV021	Study of Geomorphological aspects in the selection of sites for Dams, Reservoirs, Tunnels, Highways and Bridges	5	CO5	L2
23	1KT17CV023	Watershed management, Floods and their control	5	CO5	L3
24		River valley, Drainage pattern – parameters and development	5	CO5	L3
25	1KT17CV025	Coastlines and their engineering considerations	5	CO5	L3
26	1KT17CV026	Earthquake - Causes and Effects, Seismic waves, Engineering problems related to Earthquakes	5	CO6	L5
27	1KT17CV412	What are the applications of topographic maps and contour maps?	5	CO9	L3
28	1KT18CV400	What are the applications of Remote Sensing?	5	CO10	L5
29	1KT18CV401	What are the applications of GIS and GPS?	5	CO10	L5
39	1KT18CV402	Define LANDSAT Imagery and its uses.	5	CO9	L3
31	1KT18CV403	What are the impact of Mining and Quarrying on Environment?	5	CO9	L3
32	1KT18CV404	What are the Impact of and Reservoirs on Environment?	5	CO9	L3
33	1KT18CV405	Explain natural disasters and their mitigation.	5	CO9	L3
34	1KT18CV406	Seismic methods, Resistivity curves	5	CO8	L5
35	1KT18CV407	Water Bearing Formations, Aquifer types	5	CO8	L5
36	1KT18CV408	Parameters - Porosity, Specific yield and retention,	5	CO8	L5
	1KT18CV409	Permeability, Transmissibility and Storage	5	CO8	L5

		Coefficient			
38	1KT18CV410	Springs and Artesian Wells	5	CO8	L5
39	1KT18CV411	Artificial Recharging of Groundwater,	5	CO8	L5
40		Sea water intrusion and remedies	5	CO8	L5
41		Landforms – Classification, Rock weathering, types	5	CO5	L2
		and its effects on Civil Engineering Projects	•		
42	1KT16CV077	Study of Geomorphological aspects in the selection	5	CO5	L2
		of sites for Dams, Reservoirs, Tunnels, Highways			
		and Bridges			
43	1KT16CV082	What are the applications of topographic maps and	5	CO9	L3
		contour maps?			
44	1KT16CV088	What are the applications of Remote Sensing?	5	CO10	L5
45	1KT16CV094		5	CO10	L5
46	1KT16CV098		5	CO9	L3
47	1KT16CV102	What are the impact of Mining and Quarrying on	5	CO9	L3
		Environment?			
48	1KT17CV028	What are the Impact of and Reservoirs on	5	CO9	L3
		Environment?			
49		Explain natural disasters and their mitigation.	5	CO9	L3
50	1KT17CV031	·····	5	CO6	L5
		and their control			
51	1KT17CV032	Hydrological cycle, Occurrence of Groundwater in	5	CO7	L4
		different terrains -Weathered, Hard and Stratified			
		rocks		00-	1
52	1K117CV033	Determination of Quality aspects - SAR, RSC and TH	5	CO7	L4
50	11/T17C\/004	of Groundwater. Groundwater Pollution		C07	
53	1KT17CV034	Groundwater Exploration- Electrical Resistivity	5	CO7	L5
54	1KT17CV035 1KT17CV036	Seismic methods, Resistivity curves	5	C08	L5
55 56	1KT17CV030 1KT17CV037	Water Bearing Formations, Aquifer types	5	CO8	L5 L5
50		Parameters - Porosity, Specific yield and retention,	5	CO8	
57	11/11/0030	Permeability, Transmissibility and Storage Coefficient	5		L9
58	1KT17CV040	Springs and Artesian Wells	5	CO8	L5
59		Artificial Recharging of Groundwater,	5	CO8	 L5
60		Sea water intrusion and remedies	5	CO8	 L5
61	1KT17CV050		5	CO5	 L2
		and its effects on Civil Engineering Projects	0		
62	1KT17CV053		5	CO5	L2
		of sites for Dams, Reservoirs, Tunnels, Highways	-		
		and Bridges			
63	1KT17CV055	Watershed management, Floods and their control	5	CO5	L3
64	1KT18CV412	River valley, Drainage pattern – parameters and	5	CO5	L3
		development			
65	1KT18CV413	Coastlines and their engineering considerations	5	CO5	L3
66	1KT18CV414	Earthquake - Causes and Effects, Seismic waves,	5	CO6	L5
		Engineering problems related to Earthquakes			
67	1KT18CV415	Earthquake intensity, Richter Scale, Seismograph	5	CO6	L5
68	1KT18CV416	Seismic zones- World and India	5	CO6	L5
69	1KT18CV417	What are the applications of topographic maps and	5	CO9	L3

		contour maps?			
70	1KT18CV418	What are the applications of Remote Sensing?	5	CO10	L5
71	1KT18CV419	What are the applications of GIS and GPS?	5	CO10	L5
72	1KT18CV420	Define LANDSAT Imagery and its uses.	5	CO9	L3
73	1KT18CV421	What are the impact of Mining and Quarrying on	5	CO9	L3
		Environment?			
74	1KT18CV422	What are the Impact of and Reservoirs on	5	CO9	L3
		Environment?			
75	1KT18CV423	Explain natural disasters and their mitigation.	5	CO9	L3
76	1KT18CV424	Parameters - Porosity, Specific yield and retention,	5	CO8	L5
77	1KT18CV425	Permeability, Transmissibility and Storage	5	CO8	L5
		Coefficient			

F. EXAM PREPARATION

1. University Model Question Paper

Cour	se:	Engineering Geology				Month /	/ Year	May //	2018
Crs C	Code:	18CV36 Sem:		Marks:	100	Time:		180 mi	inutes
Mod	Note	Answer all FIVE full question	ns. All questi	ions carry eq	lual marks.		Marks	со	Level
ule									
1	а								
	b								
	С								
	d								
	е								
2	а								
	b								
	С								
	d								+
	e								+
									+
									1

2. SEE Important Questions

Cours	se:	Engineering Geology	Month	/ Year	May /2	2018
Crs C	ode:	18CV36 Sem: III Marks: 100	Time:		180 mi	nutes
Mod	Qno.	Important Question		Marks	СО	Year
ule						
1	а	With a neat sketch explain the internal structure of the e	earth.	8	CO3	L2
	b	What are the applications of Engg. Geology ir engineering?	civil	7	CO3	L2
	С	Write physical properties of Quartz and mica Gro minerals and its industrial use.	up of	5	CO3	L2
2	а	What are the impacts of folds in the selection of sites for tuni	nels ?	8	CO4	L3
	b	What are igneous rocks? Explain with examples and uses in construction.	l their	6	CO3	L3
	С	What are the impacts of faults and joints in the selection of s reservoirs?	ites for	6	CO4	L3
3	а	What are the causes of and effects of earthquake?		5	CO3	L3
	b	Explain watershed management.		5	CO3	L3
		What is mechanical weathering?		5	CO3	L3
		What are seismic waves? How it helps in defining the internal struc the earth.	cture of	5	CO3	L3
4	а	Add a note on aquifers and its types with neat sketches.		8	CO4	L3
	b	What are the geomorphological aspects in the selection of s dams/reservoirs, tunnels, highways and bridges	ites for	7	CO4	L3
	С	Explain hydrological cycle with a neat diagram.		5	CO3	L3
5	а	Explain how electrical resisitivity method is useful in grour exploration.	dwater	5	C07	L5
		What are the impacts of mining and quarrying on environment.		5	CO9	L2
	С	What are the applications of GIS and remote sensing?		8	CO10	L3

G. Content to Course Outcomes

1. TLPA Parameters

Table 1: TLPA – Example Course

Мо	Course Content or Syllabus	Content	Blooms'	Final	Identified	Instructi	Assessment
dul	(Split module content into 2 parts which have	Teachin	Learning	Bloo	Action	on	Methods to
e-	similar concepts)	g Hours	Levels	ms'	Verbs for	Methods	Measure
#			for	Level	Learning	for	Learning
			Content		_	Learning	_
A	В	С	D	Ε	F	G	Н

1	Introduction: Application of Earth Science in Civil Engineering Practices, Understanding the earth, internal structure and composition.	3	L1	L1	Learn	- Lecture -PPT	- Assignment - -
1	Mineralogy: Mineral properties, composition and their use in the manufacture of construction materials – Quartz Group (Glass); Feldspar Group (Ceramic wares and Flooring tiles); Kaolin (Paper, paint and textile); Asbestos (AC sheets); Carbonate Group (Cement) ; Gypsum (POP, gypsum sheets, cement); Mica Group (Electrical industries); Ore minerals - Iron ores (Steel); Chromite (Alloy); Bauxite (aluminum); Chalcopyrite (copper)	7	L2	L2	Understa nd	- Lecture - PPT -	- Assignment - -
2	Petrology: Formation, Classification and Engineering Properties. Rock as construction material, concrete aggregate, railway ballast, roofing, flooring, cladding and foundation. Deformation of rocks, Development of Joints, Folds, Faults and Unconformities. Their impact in the selection of sites for Dams, Reservoirs, Tunnels, Highways and Bridges, Rock Quality Determination (RQD), Rock Structure Rating (RSR)		L2	L2	Understa nd	- Lecture -PPT	- Assignment -
2	Igneous Rocks - Granite, Gabbro, Dolerite, Basalt; Sedimentary rocks - Sandstone, Shale, Limestone, Laterite; Metamorphic rocks - Gneiss, Quartzite,Slate, Charnockite: Decorative stones - Porphyries, Marble and Quartzite		L3	L3	Apply	- Lecture -PPT	Assignment
3	Geomorphology and Seismology: Landforms – Classification, Rock weathering, types and its effects on Civil Engineering Projects. Study of Geo-morphological aspects in the selection of sites for Dams, Reservoirs, Tunnels, Highways and Bridges. Watershed management, Floods and their control, River valley, Drainage pattern – parameters and development; Coastlines and their engineering considerations.		L2 L3	L3	Understa nd	- Lecture -PPT	Assignment
3	Earthquake - Causes and Effects,, Seismic waves, Engineering problems related to Earthquakes, Earthquake intensity, Richter Scale, Seismograph, Seismic zones- World and India, Tsunami – causes and effects. Early warning system. Reservoir Induced Seismicity; Landslides – causes and their control		L5	L5	Apply	- Lecture -PPT	- Assignment - -
	Hydrogeology: Hydrological cycle, Occurrence of Groundwater in different terrains -Weathered, Hard and Stratified rocks; Determination of Quality aspects - SAR, RSC and TH of Groundwater. Groundwater Pollution, Groundwater Exploration- Electrical Resistivity and Seismic methods, Resistivity curves		L2	L2	Analyze	- Lecture -PPT	- Assignment -
4	Water Bearing Formations, Aquifer types and parameters - Porosity, Specific yield and retention, Permeability, Transmissibility and Storage Coefficient. Springs and Artesian		L4 L5	L5	Evoluate	- Lecture -PPT	- Assignment - -

Wells, Artificial Recharging of Groundwater, Sea water intrusion and remedies.					
Geodesy: Study of Topographic maps and Contour maps; Remote Sensing – Concept, Application and its Limitations; Geographic Information System (GIS) and Global Positioning System (GPS) – Concept and their use resource mapping.	L2		Understa nd		- Assignment - -
LANDSAT Imagery–Definition and its use. Impact of Mining, Quarrying and Reservoirs on Environment. Natural Disasters and their mitigation.	L4 L5	L5	Apply	- Lecture -PPT	- Assignment - -

2. Concepts and Outcomes:

Table 2: Concept to Outcome – Example Course

				spi to outcome – Ex	•	
Mo dul e- #	Learning or Outcome from study of the Content	Identified Concepts from Content	Final Concept	Concept Justification (What all Learning Happened from the	CO Components (1.Action Verb, 2.Knowledge, 3.Condition /	Course Outcome Student Should be
#	or Syllabus	Content		study of Content / Syllabus. A short word for learning or outcome)	Methodology, 4.Benchmark)	able to
A	1	J	K	L	М	Ν
	Structure of earth	Earth Materials	Earth Materials	Structure of the earth	Learn	Student will know about the composition of earth.
	Earth materials	Minerals	Minerals	Mineral Properties	Understand	Students should be able to understand earth materials.
	and types	Formation		Lithology	Understand	Students should be able to understand rock formation
	Folds, Faults	Structural deformati on	deformation	Folds, faults, Joints		Applying the knowledge in selection of Civil Structures
	Weathering and Geomorpholo gy	forms		Weathering, geomorphology	Understand	Students should be able to understand land forms and weathering
	waves	Earthquak e		Seismic waves	Apply	Applying the knowledge in selection of Civil projects and evoluate seismic data by seismogrpah
4	Aquifers	Water quality	Water quality	Water - Qualitative and quantitative	Analyze	Students should be able to analyze aquifer condition

						and resisitivity curves
4	al	Groundwa ter exploratio n	exploration	Resistivity curves	Evoluate	Students should be able to evoluate the resisitivity data
5	Toposheets , maps, imageries	Maps, GPS	Maps, GPS	Toposheets, maps, imageries	Understand	Students should be able to understand maps, imageries
5	Remote sensing and GIS	RS&GIS		Remote sensing and GIS	Apply	Students should be able to apply the knowledge of RS&GIS to generate maps